Parallel Stochastic Gradient Descent with Sound Combiners

نویسندگان

  • Saeed Maleki
  • Madan Musuvathi
  • Todd Mytkowicz
چکیده

Stochastic gradient descent (SGD) is a well-known method for regression and classification tasks. However, it is an inherently sequential algorithm — at each step, the processing of the current example depends on the parameters learned from the previous examples. Prior approaches to parallelizing SGD, such as HOGWILD! and ALLREDUCE, do not honor these dependences across threads and thus can potentially suffer poor convergence rates and/or poor scalability. This paper proposes SYMSGD, a parallel SGD algorithm that retains the sequential semantics of SGD in expectation. Each thread in this approach learns a local model and a probabilistic model combiner that allows the local models to be combined to produce the same result as what a sequential SGD would have produced, in expectation. This SYMSGD approach is applicable to any linear learner whose update rule is linear. This paper evaluates SYMSGD’s accuracy and performance on 9 datasets on a shared-memory machine shows up-to 13× speedup over our heavily optimized sequential baseline on 16 cores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conflict Graphs for Parallel Stochastic Gradient Descent

We present various methods for inducing a conflict graph in order to effectively parallelize Pegasos. Pegasos is a stochastic sub-gradient descent algorithm for solving the Support Vector Machine (SVM) optimization problem [3]. In particular, we introduce a binary treebased conflict graph that matches convergence of a wellknown parallel implementation of stochastic gradient descent, know as HOG...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Fast Asynchronous Parallel Stochastic Gradient Decent

Stochastic gradient descent (SGD) and its variants have become more and more popular in machine learning due to their efficiency and effectiveness. To handle large-scale problems, researchers have recently proposed several parallel SGD methods for multicore systems. However, existing parallel SGD methods cannot achieve satisfactory performance in real applications. In this paper, we propose a f...

متن کامل

Stochastic Nonconvex Optimization with Large Minibatches

We study stochastic optimization of nonconvex loss functions, which are typical objectives for training neural networks. We propose stochastic approximation algorithms which optimize a series of regularized, nonlinearized losses on large minibatches of samples, using only first-order gradient information. Our algorithms provably converge to an approximate critical point of the expected objectiv...

متن کامل

Asynchronous Decentralized Parallel Stochastic Gradient Descent

Recent work shows that decentralized parallel stochastic gradient decent (D-PSGD) can outperform its centralized counterpart both theoretically and practically. While asynchronous parallelism is a powerful technology to improve the efficiency of parallelism in distributed machine learning platforms and has been widely used in many popular machine learning softwares and solvers based on centrali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.08030  شماره 

صفحات  -

تاریخ انتشار 2016